The existence of unique solution of the system of equations, $x+y+z=\beta $ , $5x-y+\alpha z=10$ , $2x+3y-z=6$ depends on
$\alpha $ only
$\beta $ only
$\alpha $ and $\beta $ both
neither $\alpha $ nor $\beta $
If $x + y - z = 0,\,3x - \alpha y - 3z = 0,\,\,x - 3y + z = 0$ has non zero solution, then $\alpha = $
If the system of equations
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
has infinitely many solutions, then $\lambda^4-\mu$ is equal to :
If $a, b, c$ are sides of a scalene triangle, then the value of $\left| \begin{array}{*{20}{c}}
a&b&c\\
b&c&a\\
c&a&b
\end{array} \right|$ is
If ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, then ${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $
The sum of the real roots of the equation $\left| {\begin{array}{*{20}{c}}
x&{ - 6}&{ - 1}\\
2&{ - 3x}&{x - 3}\\
{ - 3}&{2x}&{x = 2}
\end{array}} \right| = 0$ is equal to